Profile-Based Parametric Sensitivity Measures for Nonlinear Regression Models

H. Sulieman, J. McLellan and D.W. Bacon
Department of Chemical Engineering
Queen’s University
Outline

• Motivation
• Existing Approaches
• Regression Models
• Profile-Based Sensitivity - Single Response Case
• Illustrative Example - Michaelis-Menten kinetics
• Profile-Based Sensitivity - Multi-Response Case
• Illustrative Example - Dow Chemical regression Benchmark problem
• Summary and Conclusions
Motivation

Parametric sensitivities describe the impact of perturbations in model parameter estimates on predicted responses.

Uses
• identification of influential parameters
• guide further experimentation

Sensitivities are in the context of -
 – a specified model formulation
 • structure
 • parameterization
 – a specified dataset
 • run conditions
 • designed experiments?
Regression Models

Uniresponse Model

- N runs

\[y_j = \eta_j(\Theta) + \varepsilon_j = f(x_j, \Theta) + \varepsilon_j, \quad j = 1, \ldots, N \]

\[y = \eta(\Theta) + \varepsilon \]

Multiresponse Model

- N runs, M responses

\[y_{nm} = f_m(x_n, \Theta) + \varepsilon_{nm}, \quad n = 1, \ldots, N; \quad m = 1, \ldots, M \]

\[Y = H(\Theta) + Z \]
Existing Approaches

- Marginal sensitivities
 » first-order derivatives of predicted responses with respect to parameters
 \[\frac{\partial \hat{y}_i}{\partial \theta_j} \]
- Monte Carlo simulation
 » random sampling of model parameters to generate input/output distributions
- FAST - Fourier Amplitude Sensitivity Test - Cukier et al. (1973), Cukier et al. (1978), Saltelli et al. (1999)
 » impact of perturbations assessed using search curve in parameters
- correlations between parameter values typically ignored in these approaches
Profile-Based Sensitivity Coefficient (PSC)

- motivated by profiling algorithm of Bates and Watts (1988) for producing profile trace plots
 - *profile traces* - plots of conditional estimate of one parameter vs. another parameter, with remaining parameters held at their conditional estimates
 - indicates both nonlinearity and extent of correlation between parameter estimates
- *prediction parameter transformation*
 - re-assign parameter to be prediction at a specific point
 - profile trace of this parameter provides a graphical indication of sensitivity of prediction to perturbations in other parameters
 - motivates definition of profile-based sensitivity
Profile-Based Sensitivity Coefficient

Definition - Uniresponse Case
(Sulieman, 1998, Sulieman et al., 2001)

» total derivative of the predicted response at a point with respect to a given parameter, with other parameter estimates held at their conditional least squares values

\[
PSC_i(x_0) = \frac{D\eta_0(\theta_i, \Theta_{-i}(\theta_i))}{D\theta_i} = \frac{\partial\eta_0}{\partial\theta_i} + \left. \frac{\partial\eta_0}{\partial\Theta_{-i}} \right|_{\Theta_{-i}} \frac{\partial\Theta_{-i}}{\partial\theta_i}
\]

» cf., marginal sensitivity coefficient

\[
MSC_i(x_0) = \frac{\partial\eta_0}{\partial\theta_i}
\]
Profile-Based Sensitivity Coefficient - Unireponse

Structure of PSC

\[PSC_i(x_0) = \frac{D\eta_0(\theta_i, \Theta_{-i}(\theta_i))}{D\theta_i} = \frac{\partial \eta_0}{\partial \theta_i} + \left. \frac{\partial \eta_0}{\partial \Theta_{-i}} \right|_{\tilde{\Theta}_{-i}} \frac{\partial \tilde{\Theta}_{-i}}{\partial \theta_i} \]

\[= \frac{\partial \eta_0}{\partial \theta_i} - \frac{\partial \eta_0}{\partial \Theta_{-i}} \left(\frac{\partial^2 S}{\partial \Theta_{-i} \partial \Theta'_{-i}} \right)^{-1} \frac{\partial^2 S}{\partial \theta_i \partial \Theta'_{-i}} \left|_{\tilde{\Theta}_{-i}(\theta_i)} \right. \]

\[= MSC(x_0) + \text{correction term} \]

» correction term accounts for correlation between parameter estimates, nonlinearity

» uses identity for total derivative of \[\left. \frac{\partial S(\theta_i, \Theta_{-i})}{\partial \Theta_{-i}} \right|_{\tilde{\Theta}_{-i}} \]

where S is the sum of squares function
Profile-Based Sensitivity Coefficient - Uniresponse

Structure of PSC

\[PSC_i(x_0) = \frac{D\eta_0(\theta_i, \Theta_{-i}(\theta_i))}{D\theta_i} = \frac{\partial\eta_0}{\partial\theta_i} + \frac{\partial\eta_0}{\partial\Theta_{-i}} \frac{\partial\Theta_{-i}}{\partial\theta_i} \]

\[= \frac{\partial\eta_0}{\partial\theta_i} - \frac{\partial\eta_0}{\partial\Theta_{-i}} \left(\frac{\partial^2 S}{\partial\Theta_{-i}\partial\Theta'_{-i}} \right)^{-1} \frac{\partial^2 S}{\partial\theta_i\partial\Theta'_{-i}} \mid_{\Theta_{-i}(\theta_i)} \]

\[= MSC(x_0) + \text{correction term} \]

» correction term accounts for correlation between parameter estimates, nonlinearity

» uses identity for total derivative of \[\frac{\partial S(\theta_i, \Theta_{-i})}{\partial\Theta_{-i}} \mid_{\Theta_{-i}} \]

where S is the sum of squares function
Profile-Based Sensitivity Coefficient - Uniresponse

Computational issues

• scaling
 » work with studentized parameters and predicted responses to remove scale dependence
 • centering by least squares estimate
 • scaling by standard error
 » dimensionless sensitivity coefficients

• derivative values
 » algebraic models - obtain directly
 » differential equation models - via first- and second-order sensitivity equations
 • velocity and acceleration arrays are involved in PSC
Example - Uniresponse PSC

Michaelis-Menten model

» dataset from Bates and Watts (1988)

» model equation

\[f(x, \theta) = \frac{\theta_1 x}{\theta_2 + x} \]
Profile traces

Michaelis–Menten Model
Example - Uniresponse PSC

- Graphical summaries of PSC values

Solid line - PSC
Dashed line - MSC
Example - Unireponse PSC

Interpretation

• for θ_1
 » MSC, PSC similar at high substrate
 • reduced correlation between parameter estimates
 • θ_1 defines asymptote at high concentration
 » significant difference between MSC, PSC at mid-range
 • MSC indicates significant sensitivity, while PSC indicates negligible sensitivity

• for θ_2
 » MSC, PSC similar at low substrate
 • reduced correlation between parameter estimates
 • θ_2 defines behaviour at low substrate concentrations
 » PSC indicates more significant sensitivity at higher substrate - through parameter correlation
In this case, the parameter estimates are determined to minimize the Box-Draper determinant criterion:

\[d(\Theta) = |Z'Z| \]

The vector of predicted responses at a nominal run condition is denoted as:

\[H_0(\Theta) = [f_1(x_0, \Theta) \ldots f_M(x_0, \Theta)] \]

The PSC is again defined as a total derivative, yielding a vector of PSC values in this instance:

\[
PSC_i(x_0) = \frac{DH'_0(\theta_i, \Theta_{-i}(\theta_i))}{D\theta_i} = \frac{\partial H'_0}{\partial \theta_i} + \frac{\partial H'_0}{\partial \Theta_{-i}} \frac{\partial \Theta_{-i}(\theta_i)}{\partial \theta_i} \bigg|_{\Theta_{-i}}
\]

\[= MSC_i(x_0) + \text{correction vector} \]
Multiresponse PSC

Computational Issues

• scaling
 » use similar studentization approach - centering by Box-Draper estimates and scaling by standard errors

• derivatives
 » Hessian of determinant computed using identity due to Federov (1972)
 » differential equation models - 1st and 2nd-order derivatives computed from sensitivity equations
 • efficiency issues

• conditioning
 » dependencies can occur in response data, leading to singular residual matrix and spurious optima
Multiresponse PSC Example

Dow Chemical regression benchmark
(ref to be added)

- isothermal batch reactor
- dataset consists of concentration profiles over time for batches run at 3 different temperatures
 » data for three species used - three response variables
- measurement times differ for each profile, and are sampled at non-uniform intervals
- considered by Biegler et al. (1986), Biegler et al. (1991), Guay and McLean (1995)
Example - Multiresponse PSC

Dow Chemical regression benchmark example - model

\[
\frac{dy_1}{dt} = -k_2 y_1 y_2 A
\]

\[
\frac{dy_2}{dt} = -k_1 y_2 (x_2 + 2x_3 - x_4 - 2y_1 + y_2 - y_3) - k_2 y_1 y_2 A + k_{-1} \beta_1 (-x_3 + x_4 + y_1 - y_2) A
\]

\[
\frac{dy_3}{dt} = k_1 (x_3 - y_1 - y_3)(x_2 + 2x_3 - x_4 - 2y_1 + y_2 - y_3) + k_2 y_1 y_2 A - \frac{1}{2} k_{-1} \beta_2 y_3 A
\]

where

\[
k_i = k_{i0} \exp \left(\frac{E_i}{R} \left(\frac{1}{x_i} - \frac{1}{T_0} \right) \right), \quad i = -1, 1, 2
\]

\[
A = \frac{-2x_3 + x_4 + 2y_1 - y_2 + y_3}{y_1 + \beta (-x_3 + x_4 + y_1 - y_2) + \beta_2 y_3}
\]

\[
\beta_1 = \frac{K_1}{K_2}, \quad \beta_2 = \frac{K_3}{K_2}
\]
Example - Multiresponse PSC

- responses - y_1, y_2, y_3
- parameters - $k_{10}, E_1, k_{20}, E_2, k_{-10}, E_{-1}, \beta_1, \beta_2$
- estimation
 - using determinant criterion
 - residual mean square has 73 degrees of freedom
Multiresponse PSC Example

T=40°C

T=67°C

T=100°C

Observation Number

PSC’s describing sensitivity of predicted concentration of y_3 to β_1
Multiresponse PSC Example

PSC’s describing sensitivity of predicted concentration of \(y_2 \) to selected parameters at 40°C

- \(k_{10} \)
- \(k_{20} \)
- \(k_{-10} \)
- \(E_{-1} \)
- \(\beta_1 \)
- \(\beta_2 \)
Example - Multiresponse PSC

- interpretation - y_3 to β_1 at three temps
 » close agreement of msc, psc at low, moderate T, but changes dramatically at high T - marginal sensitivities negligible at high T, but psc indicates significant sensitivities - consequence of parameter correlation and model behaviour over three temperatures

- y_2 to params at 40 C
 » general pattern - significant sensitivities at low times (early in batch) - where bulk of concentration changes occur - not surprising - msc’s indicate sensitivities where psc’s are negligible - suggestion that correlation counteracts marginal sensitivities … - discrepancies over early part of run - where major changes are occurring
Summary and Conclusions

• Proposed new measures of parametric sensitivity that account for correlation between parameter estimates, nonlinearity in estimation - profile-based sensitivity coefficients (PSC’s)
• PSC’s provide more accurate reflection of impact of parameter perturbation when all other parameters are adjusted to provide best fit - more accurate reflection of joint estimation
• PSC’s defined as total derivative of predicted response with respect to parameter of interest
 » for uni-response, via least squares criterion
 » for multi-response, via determinant criterion
• quantitative measure that can be combined with graphical summaries - profile traces
• illustrated using uni-response algebraic model, multi-response differential equation model
Acknowledgements

We would like to acknowledge -

1) the assistance of Prof. Martin Guay through the use of his multi-response estimation routines;

2) the financial support of NSERC.