The Art of Explaining
“Intuitive Reflections”

Jim McLellan
October, 1999
Outline

• introduction
• setting
• strategies
• pitfalls
• exercise
• wrap-up
Settings

Class
» large group
» planned lecture
» spontaneous - response to question

Small Group
» informal gathering

Question and Answer Session
» test imperative

Key distinction - peer pressure associated with large group.
Strategies

Analogy

» examples

» to knowledge base
 • link to specialty - knowledge of audience

» to experience base
 • link to familiar experience - e.g., shower

» scout out familiar framework, then link to this
 • take the time to sense this and prepare - control the pace
Strategies

Spiral

» vulture approach
» circle around, increasing detail progressively

Concept
Application
Outline
Details
Recapitulation
Strategies

Spiral.cont...

Points

» progression of detail
 • informal -> formal
 • abstract -> concrete -> abstract...

» refinement of ideas

» introduction of rigour in measured amounts

» solicit feedback between phases
 • “does this make sense”?

Example - types of process control
Strategies

Images
» visual component to explanation
» reduce degree of abstraction by grounding in visual cue
» Example - notion of a statistic/sampling distribution
 • how variation propagates through a computation

Prepared vs. Spontaneous
» prepared slides - inherently more passive
» spontaneous - images and development evolve during the course of the explanation
» opportunity for “revelation”
Strategies

Interaction
- draw students into explanation - induce participation

Take Your Time
- take the time to frame your explanation before beginning
- control the pace

Close the Loop
- solicit feedback regularly, particularly at reasonable break points
- don’t build on a weak initial understanding
Pitfalls

• **Tangents (!)**
 » relative term
 » class situation - tangent represents time well off the beaten track - remainder of students left hanging
 » small group - excessive detail that obscures the primary concepts
 » reign in
 » defer to an additional session?

• **Please Release Me**
 » temper the need for feedback - avoid stalling because you are waiting for some indication from the class
Pitfalls

- “Talk at” vs. “Discuss with”

- Is the analogy approach patronizing?
 - gauge the reaction
Things to Avoid

• “simple”, “can be easily shown”
 – statements that prejudge the development of understanding
 » each individual has a “difficulty profile”
 » encourage comfort about exchanging ideas - level of trust
Exercise

Choose a topic from your field of specialization, and explain it to your group

» consider strategies

» prepare approach

» present

» review with group
Wrap-up

• use collection of approaches
 » be versatile
• adapt on the run
• close the loop
• watch for tangents
• take chances
Random Samples

Scenario -

» we have an underlying pattern of variability for a process which we would like to characterize -- the population

» we perform a series of experiments on the process in such a way that the results are independent - outcome of one experiment has no influence on any other experiment

» the underlying distribution in place during each experimental run is identical to that of the population

» when we run each experiment, we are collecting a value from the random variable X_i - which has uncertainty

» X_i represents the “i-th” act of sampling - referred to as a sample random variable
Definition - Random Sample

A random sample of size “n” of a population random variable is a collection of random variables X_1, \ldots, X_n such that

» the X_i’s are independent

» the X_i’s have distributions identical to that of X, i.e.,

$$F_{X_i}(x) = F_X(x)$$

Each X_i represents a snapshot of the process. The X_i’s are referred to as sample random variables.

What do we do with these sample values?...
Sample Average

- used to estimate the mean
- given “n” samples, \(X_1, \ldots, X_n \), compute
 \[
 \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
 \]
- interpretation - a rule for computing the sample average, involving sampling
- \(\bar{X} \) is a random variable
- observed value
 \[
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
 \]
Statistics

• Sample average is an example of a “statistic”

Definition

A statistic is a function of sample random variables that is used to estimate a value of a parameter, and does not depend on any unknown parameters.

– e.g., sample average estimates mean μ and doesn’t depend on unknown parameters

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
Example - Shower
Example - Shower
Example - Shower

I want a hot shower

control algo.
hotter shower = turn HW tap to right

setpoint
I want a hot shower

sensors
FI

final control elements

Example - Shower

control algo.

I want a hot shower

setpoint

hotter shower = turn HW tap to right

final control elements

feedback loop

sensors

FI

TI